EE 330 Lecture 29

Bipolar Processes

- Device Sizes
- Parasitic Devices
- JFET
- Thyristors

Thyristors

- SCR - Basic operation

Review From Previous Lecture

Two-port representation of amplifiers

- Amplifier often unilateral (signal propagates in only one direction: wlog $\mathrm{y}_{12}=0$)
- One terminal is often common
- "Amplifier" parameters often used

y parameters
- Amplifier parameters can also be used if not unilateral
- One terminal is often common

Amplifier parameters

Relationship with Dependent Sources ?

Dependent sources from EE 201

Amplifier

Voltage Dependent
Voltage Source

Current
Amplifier

Topical Coverage Change

Will have several additional lectures on amplifier structures but will temporarily suspend discussion of amplifiers to consider Thyristors

This is being done to get ready for the Thyristor laboratory experiments

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices

Special Bipolar Processes

- Thyristors

SCR
TRIAC

Review from a Previous Lecture

B-B' Section

Review from a Previous Lecture

B-B' Section

Will consider next the JFET but first some additional information about MOS Devices

Enhancement and Depletion MOS Devices

- Enhancement Mode n-channel devices

$$
V_{T}>0
$$

- Enhancement Mode p-channel devices

$$
V_{T}<0
$$

- Depletion Mode n-channel devices

$$
V_{T}<0
$$

- Depletion Mode p-channel devices

$$
V_{T}>0
$$

Enhancement and Depletion MOS Devices

n-channel

Enhancement

Depletion
p-channel

- Depletion mode devices require only one additional mask step
- Older n-mos and p-mos processes usually had a depletion device and an enhancement device
- Depletion devices usually not available in CMOS because applications usually do not justify the small increasing costs in processing
- The threshold voltage of either n-channel or p-channel devices is adjusted to a desired value by doing a channel implant before gate oxide is applied

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes JFET
- Other Junction Devices

Special Bipolar Processes

- Thyristors

SCR
TRIAC

The JFET

(Parasitic p-channel device in basic bipolar process)

- Gate is both above and below channel
- With no bias, channel exists between D and S

The JFET

With $\mathrm{V}_{\mathrm{GS}}=0$, channel exists under gate between D and S

The JFET

With $\mathrm{V}_{\mathrm{GS}}=0$, channel exists under gate between D and S

Under small reverse bias (depletion region widens and channel thins)

The JFET

With $\mathrm{V}_{\mathrm{GS}}=0$, channel exists under gate between D and S

Under sufficiently large reverse bias (depletion region widens and channel disappears - "pinches off")

The JFET

With $\mathrm{V}_{\mathrm{GS}}=0$, channel exists under gate between D and S

Under small reverse bias and large negative V_{DS} (channel pinches off)

The JFET

n-channel

p-channel

p-channel JFET

Square-law model of p-channel JFET

$$
I_{D}= \begin{cases}0 & V_{G S}>V_{P} \\ \frac{2 I_{D S S P}}{V_{P}^{2}}\left(V_{G S}-V_{P}-\frac{V_{D S}}{2}\right) V_{D S} & -0.3<V_{G S}<V_{P} \\ I_{D S S P}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} & -0.3<V_{G S}<V_{P} \quad V_{D S}<V_{G S}-V_{P} \\ & \text { (} I_{D S S p} \text { carries negative sign) }\end{cases}
$$

- Functionally identical to the square-law model of MOSFET
- JFET is a depletion mode device
- Parameters $I_{\text {DSS }}$ and V_{P} characterize the device
- $I_{\text {DSS }}$ proportional to W / L where W and L are width and length of $n+$ diff
- $\quad V_{P}$ is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device
- Must not forward bias GS junction by over about 300 mV or excessive base current will flow (red constraint)
- Widely used as input stage for bipolar op amps

The JFET

n-channel

p-channel

n-channel JFET
(not available in this process)

Square-law model of n-channel JFET

$$
I_{D}=\left\{\begin{array}{ll}
0 & V_{G S}<V_{P} \\
\frac{2 I_{D S S}}{V_{P}^{2}}\left(V_{G S}-V_{P}-\frac{V_{D S}}{2}\right) V_{D S} & 0.3>V_{G S}>V_{P} \\
\mathrm{I}_{\mathrm{DSS}}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} & 0.3>V_{G S}>V_{P}
\end{array} \quad V_{D S}>V_{G S}-V_{P}<V_{D S}<V_{G S}-V_{P} .\right.
$$

- Functionally identical to the square-law model of MOSFET
- JFET is a depletion mode device
- Parameters $\mathrm{I}_{\text {DSs }}$ and V_{P} characterize the device
- $I_{\text {DSs }}$ proportional to W / L where W and L are width and length of $n+$ diff
- V_{P} is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device
- Must not forward bias GS junction by over about 300 mV or excessive base current will flow (red constraint)
- Widely used as input stage for bipolar op amps

The FET Devices

n -channel

p-channel

S
n-channel

p-channel

n-channel

p-channel
$I_{D}= \begin{cases}0 & \text { cutoff } \\ \frac{2 I_{D S S}}{V_{P}^{2}}\left(V_{G S}-V_{P}-\frac{V_{D S}}{2}\right) V_{D S} & \text { Triode } \\ I_{D S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} & \text { Saturation }\end{cases}$

$$
I_{D}=\left\{\begin{array}{l}
0 \\
\frac{\mu C_{O X} W}{L}\left(V_{G S}-V_{T H}-\frac{V_{D S}}{2}\right) V_{D S} \\
\frac{\mu C_{O X} W}{2 L}\left(V_{G S}-V_{T H}\right)^{2}
\end{array}\right.
$$

Cutoff

Triode

Saturation
$I_{\text {Dss }}$ proportional to W / L where W and L are width and length of $n+$ diff (could define $I_{\text {Dss }}=\hat{b}_{s s s} \frac{W}{L}$)
V_{P} and $V_{T H}$ are analogous

$$
\frac{2 \hat{I}_{\mathrm{DSs}}}{\mathrm{~V}_{\mathrm{P}}^{2}} \text { and } \mu \mathrm{C}_{\mathrm{Ox}} \text { are analogous }
$$

Basic circuit structures are the same (with different biasing implications)

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET

Other Junction Devices
Special Bipolar Processes

- Thyristors

SCR
TRIAC

The Schottky Diode

- Metal-Semiconductor Junction
- One contact is ohmic, other is rectifying
- Not available in all processes
- Relatively inexpensive adder in some processes
- Lower cut-in voltage than pn junction diode
- High speed

The MESFET

- Metal-Semiconductor Junction for Gate
- Drain and Source contacts ohmic, other is rectifying
- Usually not available in standard CMOS processes
- Must not forward bias very much
- Lower cut-in voltage than pn junction diode
- High speed

The Thyristor

A bipolar device in CMOS Processes
Consider a Bulk-CMOS Process

Have formed a lateral pnpn device !
Will spend some time studying pnpn devices

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices

Special Bipolar Processes
Thyristors
SCR
TRIAC

Thyristors

The good and the bad!

Thyristors

The good

SCRs Triacs

The bad

Parasitic Device that can destroy integrated circuits

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices

Special Bipolar Processes

- Thyristors SCR
TRIAC

The SCR

Silicon Controlled Rectifier

- Widely used to switch large resistive or inductive loads
- Widely used in the power electronics field
- Widely used in consumer electronic to interface between logic and power

Usually made by diffusions in silicon

Consider first how this 4-layer 3-junction device operates

Operation of the SCR

Not actually separated but useful for describing operation

Variation of Current Gain (β) with Bias for BJT

Note that current gain gets very small at low base current levels

Operation of the SCR

Consider a small positive bias (voltage or current) on the gate $\left(\mathrm{V}_{\mathrm{GC}}<0.5 \mathrm{~V}\right)$ and a positive and large voltage V_{F}

Will have $\quad V_{C 1} \geq V_{F}-0.5 \mathrm{~V}$
Thus Q_{1} has a large positive voltage on its collector
Since $\mathrm{V}_{\mathrm{BE} 1}$ is small, $\mathrm{I}_{\mathrm{C} 1}$ will be small as will $\mathrm{I}_{\mathrm{C} 2}$, diode equation governs $B E$ junction of Q_{1} I_{F} will be very small

Operation of the SCR

Now let bias on the gate increase $\left(V_{G C}\right.$ around 0.6 V$)$ so Q_{1} and Q_{2} in $F A \quad V_{C 1} \geq V_{F}-0.5 \mathrm{~V}$
From diode equation, base voltage $\mathrm{V}_{\mathrm{BE} 1}$ will increase and collector current $\mathrm{I}_{\mathrm{C} 1}$ will increase
Thus base current $\mathrm{I}_{\mathrm{B} 2}$ will increase as will the collector current of $\mathrm{I}_{\mathrm{C} 2}$
Under assumption of operation in FA region get expression

$$
\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{G}}+\beta_{1} \beta_{2} \mathrm{I}_{\mathrm{B} 1}
$$

This is regenerative feedback (actually can show pole in RHP)

Very Approximate Analysis Showing RHP Pole

Operation of the SCR

$$
V_{C 1} \cong V_{F}-0.6 \mathrm{~V}
$$

Under assumption of operation in FA region get expression

$$
I_{B 1}=I_{G}+\beta_{1} \beta_{2} I_{B 1}
$$

What will happen with this is regenerative feedback?
If I_{G} is small (and thus β_{1} and β_{2} are small) I_{F} will be very small
If I_{G} larger but less than $\beta_{1} \beta_{2} I_{B 1}$ it can be removed and current will continue to flow
$I_{C 1}$ will continue to increase and drive Q_{1} into $S A T$
This will try to drive V_{A} towards 0.9 V (but forced to be V_{F} !)

The current in V_{F} will go towards ∞
The SCR will self-destruct because of excessive heating !
Too bad the circuit self-destructed because the small gate current was able to control a lot of current!

Operation of the SCR

Consider a modified application by adding a load (depicted as R_{L})

All operation is as before, but now, after the triggering occurs, the voltage V_{F} will drop to approximately 0.8 V and the voltage $\mathrm{V}_{\mathrm{Cc}}-.8$ will appear across R_{L}

If V_{CC} is very large, the SCR has effectively served as a switch putting V_{CC} across the load and after triggering occurs, I_{G} can be removed!

But, how can we turn it off? Will discuss that later

Operation of the SCR
 SCR model
 $$
\left.\begin{array}{l} I_{F}=f_{1}\left(V_{F}, V_{G}\right) \\ I_{G}=f_{2}\left(V_{G}\right) \end{array}\right\}
$$

As for MOSFET, Diode, and BJT, several models for SCR can be developed

The Ideal SCR Model

$$
\left.\begin{array}{l}
I_{F}=f_{11}\left(V_{F}, I_{G}\right) \\
I_{G}=f_{21}\left(V_{G}\right)
\end{array}\right\}
$$

or

$$
\left.\begin{array}{l}
I_{F}=f_{1 \mid A}\left(V_{F}, V_{G}\right) \\
I_{G}=f_{21}\left(V_{G}\right)
\end{array}\right\}
$$

Operation of the SCR

Consider the Ideal SCR Model

$\mathrm{I}_{\mathrm{G} 1}$ is small (but not too small)

Operation of the SCR

Consider nearly Ideal SCR Model

- On voltage approximately 0.9 V

Operation of the SCR

Operation with the Ideal SCR
Load Line:

$$
V_{C C}=I_{F} R_{L}+V_{F}
$$

Analysis:

$$
\left.\begin{array}{l}
V_{C C}=I_{F} R_{L}+V_{F} \\
I_{F}=f_{11}\left(V_{F}, V_{G}\right)
\end{array}\right\}
$$

$I_{F}=f_{1}\left(V_{F}, V_{G}\right)$
$I_{G}=f_{2}\left(V_{G}\right)$

The solution of these two equations is at the intersection of the load line and the device characteristics

Note three intersection points
Two (upper and lower) are stable equilibrium points, one is not

When operating at upper point, $\mathrm{V}_{\mathrm{F}}=0$ so V_{Cc} appears across $R_{L} \quad$ We say SCR is ON
When operating at lower point, I_{F} approx 0 so no signal across $R_{L} \quad$ We say SCR is OFF
When $\mathrm{I}_{\mathrm{G}}=0$, will stay in whatever state it was in

Operation of the SCR

Operation with the Ideal SCR

$$
I_{F}=f_{11}\left(V_{F}, I_{G}\right)
$$

For notational convenience will drop subscript unless emphasis is needed

$$
I_{F}=f_{11}\left(V_{F}, I_{G}\right) \quad \Longleftrightarrow \quad I_{F}=f\left(V_{F}, I_{G}\right)
$$

Operation of the SCR

Operation with the Ideal SCR

Now assume it was initially in the OFF state and then a gate current was applied

$$
\begin{aligned}
& V_{C C}=I_{F} R_{L}+V_{F} \\
& I_{F}=f\left(V_{F}, I_{G}\right)
\end{aligned}
$$

Now there is a single intersection point so a unique solution

The SCR is now ON
Removing the gate current will return to the previous solution (which has 3 intersection points) but it will remain in the ON state

Operation of the SCR

Operation with the Ideal SCR

Turning SCR off when $\mathrm{I}_{\mathrm{G}}=0$

Reduce V_{CC} so that $\mathrm{V}_{\mathrm{CC}} / \mathrm{R}_{\mathrm{L}}$ goes below I_{H}
This will provide a single intersection point
$V_{C C}$ can then be increased again and SCR will stay off
Must not increase V_{CC} much above $\mathrm{V}_{\mathrm{BGF0}}$ else will turn on

Operation of the SCR

Operation with the Ideal SCR

Turning SCR off when $\mathrm{I}_{\mathrm{G}}=0$

Operation of the SCR

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110 V)
SCR will turn off whenever AC signal goes negative

Operation of the SCR

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110 V)
SCR will turn off whenever AC signal goes negative

Operation of the SCR

Operation with the Ideal SCR

Turning SCR off when $I_{G}>0$

Reduce V_{CC} so that $\mathrm{V}_{\mathrm{CC}} / \mathrm{R}_{\mathrm{L}}$ goes below I_{H}
This will provide a single intersection point
But when V_{Cc} is then increased SCR will again turn on

Operation of the SCR

Operation with the Ideal SCR
Duty cycle control of load R_{L}

Operation of the SCR

Operation with the Ideal SCR

Duty cycle control of load R_{L}

Operation of the SCR

Operation with the actual SCR

Operation of the SCR

Operation of the SCR

Operation with the actual SCR

- Still two stable equilibrium points and one unstable point
- $\Delta \mathrm{V}_{\mathrm{F}}$ is quite constant and small (around 1 V)
- If large current is flowing, power in anode can be large $\left(\mathrm{P}_{\mathrm{A}} \approx \mathrm{I}_{\mathrm{F}} \bullet 1 \mathrm{~V}\right)$
- Power in gate is usually very small

Operation of the SCR

Operation with the actual SCR

To turn on, must make I_{G} large enough to have single intersection point

SCR Terminology

I_{H} is the holding current
I_{L} is the latching current (current immediately after turn-on)
$\mathrm{V}_{\text {BGFO }}$ is the forward break-over voltage
$V_{B R R}$ is the reverse break-down voltage
$I_{G T}$ is the gate trigger current
$V_{G T}$ is the gate trigger voltage

SCR Terminology

Issues and Observations

- Trigger parameters $\left(\mathrm{V}_{\mathrm{GT}}\right.$ and $\left.\mathrm{I}_{\mathrm{GT}}\right)$ highly temperature dependent
- Want gate "sensitive" but not too sensitive (to avoid undesired triggering)
- SCRs can switch very large currents but power dissipation is large
- Heat sinks widely used to manage power
- Trigger parameters affected by both environment and application
- Trigger parameters generally dependent upon VF
- Exceeding $\mathrm{V}_{\text {BRR }}$ will usually destroy the device
- Exceeding $\mathrm{V}_{\text {BGFo }}$ will destroy some devices
- Lack of electronic turn-off unattractive in some applications
- Can be used in alarm circuits to attain forced reset
- Maximum 50% duty cycle in AC applications is often not attractive

Alarm Application

Performance Limitations with the SCR

- Very attractive properties as an electronic switch

- SCR is very useful

But:

1. Only conducts in one direction
2. Can't easily turn off (though not major problem in AC switching)

Observations about Basic SRC Circuit

Assume V_{CC} is an AC signal (often 110 V) and $\underline{\mathbf{V}}_{\mathrm{G}}$ is static

SCR is always off

Observations about Basic SRC Circuit

Assume V_{CC} is an AC signal (often 110 V) and $\underline{\mathbf{V}}_{\underline{G}}$ is static

SCR is ON about 50% of the time

Observations about Basic SRC Circuit

Assume V_{CC} is an AC signal (often 110 V) and $\underline{\mathbf{V}}_{\underline{G}}$ is static

SCR is $O N$ less than 50% of the time (duty cycle depends upon V_{G}) Often use electronic circuit to generate V_{G}

Performance Limitations with the SCR

- Very attractive properties as an electronic switch
- SCR is very useful

But:

1. Only conducts in one direction
2. Can't easily turn off (though not major problem in AC switching)

Would be useful in many additional applications if:

1. Could conduct in both directions
2. Can easily turn off with I_{G}

Improvement Concept

1. Only conducts in one direction
2. Can't easily turn off (though not major problem in AC switching)
3. Could conduct in both directions
4. Generating two gate voltages referenced to different cathodes a bit cumbersome

Will investigate bi-directional devices in next lecture

Stay Safe and Stay Healthy !

End of Lecture 29

