EE 330 Lecture 29

Bipolar Processes

- Device Sizes
- Parasitic Devices
 - JFET
 - Thyristors

Thyristors

• SCR – Basic operation

Review From Previous Lecture Two-port representation of amplifiers

- Amplifier often unilateral (signal propagates in only one direction: wlog y₁₂=0)
- One terminal is often common
- "Amplifier" parameters often used

- Amplifier parameters can also be used if not unilateral
- One terminal is often common

y parameters

Amplifier parameters

Relationship with Dependent Sources ?

Topical Coverage Change

Will have several additional lectures on amplifier structures but will temporarily suspend discussion of amplifiers to consider Thyristors

This is being done to get ready for the Thyristor laboratory experiments

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices

Special Bipolar Processes

Thyristors
 SCR
 TRIAC

Review from a Previous Lecture

B-B' Section

Review from a Previous Lecture

B-B' Section

Will consider next the JFET but first some additional information about MOS Devices Enhancement and Depletion MOS Devices

- Enhancement Mode n-channel devices $V_T > 0$
- Enhancement Mode p-channel devices
 V_T < 0
- Depletion Mode n-channel devices
 V_T < 0
- Depletion Mode p-channel devices
 V_T > 0

Enhancement and Depletion MOS Devices

- Depletion mode devices require only one additional mask step
- Older n-mos and p-mos processes usually had a depletion device and an enhancement device
- Depletion devices usually not available in CMOS because applications usually do not justify the small increasing costs in processing
- The threshold voltage of either n-channel or p-channel devices is adjusted to a desired value by doing a channel implant before gate oxide is applied

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
 JFET
- Other Junction Devices

Special Bipolar Processes

Thyristors
 SCR
 TRIAC

The JFET

(Parasitic p-channel device in basic bipolar process)

- Gate is both above and below channel
- With no bias, channel exists between D and S

The JFET

With V_{GS} =0, channel exists under gate between D and S

Under small reverse bias (depletion region widens and channel thins)

Under sufficiently large reverse bias (depletion region widens and channel disappears - "pinches off")

Under small reverse bias and large negative V_{DS} (channel pinches off)

Square-law model of p-channel JFET

$$I_{D} = \begin{cases} 0 & V_{GS} > V_{P} \\ \frac{2I_{DSSP}}{V_{P}^{2}} \left(V_{GS} - V_{P} - \frac{V_{DS}}{2}\right) V_{DS} & -0.3 < V_{GS} < V_{P} & V_{GS} + 0.3 > V_{DS} > V_{GS} - V_{P} \\ I_{DSSP} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2} & -0.3 < V_{GS} < V_{P} & V_{DS} < V_{GS} - V_{P} \end{cases}$$

(I_{DSSp} carries negative sign)

- Functionally identical to the square-law model of MOSFET
- JFET is a depletion mode device
- Parameters I_{DSS} and V_P characterize the device
- I_{DSS} proportional to W/L where W and L are width and length of n+ diff
- V_P is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device
- Must not forward bias GS junction by over about 300mV or excessive base current will flow (red constraint)
- Widely used as input stage for bipolar op amps

The JFET

Square-law model of n-channel JFET

$$I_{D} = \begin{cases} 0 & V_{GS} < V_{P} \\ \frac{2I_{DSS}}{V_{P}^{2}} \left(V_{GS} - V_{P} - \frac{V_{DS}}{2}\right) V_{DS} & 0.3 > V_{GS} > V_{P} & V_{GS} - 0.3 < V_{DS} < V_{GS} - V_{P} \\ I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2} & 0.3 > V_{GS} > V_{P} & V_{DS} > V_{GS} - V_{P} \end{cases}$$

- Functionally identical to the square-law model of MOSFET
- JFET is a depletion mode device
- Parameters I_{DSS} and V_P characterize the device
- I_{DSS} proportional to W/L where W and L are width and length of n+ diff
- V_P is negative for n-channel device, positive for p-channel device thus JFET is depletion mode device
- Must not forward bias GS junction by over about 300mV or excessive base current will flow (red constraint)
- Widely used as input stage for bipolar op amps

The FET Devices

 I_{DSS} proportional to W/L where W and L are width and length of n+ diff (could define $I_{DSS} = \hat{b}_{SS} \frac{W}{L}$) V_P and V_{TH} are analogous

$$\frac{2I_{DSS}}{V_{P}^{2}}$$
 and μC_{OX} are analogous

Basic circuit structures are the same (with different biasing implications)

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET

Other Junction Devices

Special Bipolar Processes

Thyristors
 SCR
 TRIAC

The Schottky Diode

- Metal-Semiconductor Junction
- · One contact is ohmic, other is rectifying
- Not available in all processes
- Relatively inexpensive adder in some processes
- Lower cut-in voltage than pn junction diode
- High speed

The MESFET

- Metal-Semiconductor Junction for Gate
- Drain and Source contacts ohmic, other is rectifying
- Usually not available in standard CMOS processes
- Must not forward bias very much
- Lower cut-in voltage than pn junction diode
- High speed

The Thyristor

A bipolar device in CMOS Processes

Have formed a lateral pnpn device !

Will spend some time studying pnpn devices

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices
- **Special Bipolar Processes**

Thyristors

The good and the bad!

Thyristors

The good SCRs Triacs

The bad

Parasitic Device that can destroy integrated circuits

Outline

Bipolar Processes

- Parasitic Devices in CMOS Processes
- JFET
- Other Junction Devices
- **Special Bipolar Processes**
 - Thyristors
 SCR
 TRIAC

The SCR

Silicon Controlled Rectifier

- Widely used to switch large resistive or inductive loads
- Widely used in the power electronics field
- Widely used in consumer electronic to interface between logic and power

Consider first how this 4-layer 3-junction device operates

Not actually separated but useful for describing operation

Variation of Current Gain (β) with Bias for BJT

Note that current gain gets very small at low base current levels

Consider a small positive bias (voltage or current) on the gate (V_{GC}<0.5V) and a positive and large voltage $V_{\rm F}$

Will have $V_{C1} \ge V_F - 0.5V$

Thus Q_1 has a large positive voltage on its collector

Since V_{BE1} is small, I_{C1} will be small as will I_{C2} , diode equation governs BE junction of Q_1 I_F will be very small

Now let bias on the gate increase (V_{GC} around 0.6V) so Q₁ and Q₂ in FA $V_{C1} \ge V_{F}$ - 0.5V

From diode equation, base voltage V_{BE1} will increase and collector current I_{C1} will increase Thus base current I_{B2} will increase as will the collector current of I_{C2}

Under assumption of operation in FA region get expression

$$_{B1} = \mathbf{I}_{G} + \beta_{1}\beta_{2}\mathbf{I}_{B1}$$

This is regenerative feedback (actually can show pole in RHP)

Very Approximate Analysis Showing RHP Pole

$$V_G = I_G \frac{R_{BE}}{sR_{BE}C_B + 1 - \beta_1\beta_2}$$

$$V_G s C_B + I_{B1} = I_{C2} + I_G$$
$$I_{C2} = \beta_1 \beta_2 I_{B1}$$
$$I_{B1} R_{BE} = V_G$$

 $V_{\text{C1}} \cong V_{\text{F}}\text{-}0.6V$

Under assumption of operation in FA region get expression

 $\mathbf{I}_{B1} = \mathbf{I}_{G} + \beta_{1}\beta_{2}\mathbf{I}_{B1}$

What will happen with this is regenerative feedback?

If I_G is small (and thus β_1 and β_2 are small) I_F will be very small

If I_G larger but less than $\beta_1\beta_2I_{B1}$ it can be removed and current will continue to flow

 I_{C1} will continue to increase and drive Q_1 into SAT

This will try to drive V_A towards 0.9V (but forced to be V_F !)

The current in V_F will go towards ∞

The SCR will self-destruct because of excessive heating !

Too bad the circuit self-destructed because the small gate current was able to control a lot of current!

E₁

С

Consider a modified application by adding a load (depicted as R_L)

All operation is as before, but now, after the triggering occurs, the voltage V_F will drop to approximately 0.8 V and the voltage V_{CC} -.8 will appear across R_L

If V_{CC} is very large, the SCR has effectively served as a switch putting V_{CC} across the load and after triggering occurs, I_G can be removed!

But, how can we turn it off? Will discuss that later

SCR model $I_F = f_1(V_F, V_G)$ $I_G = f_2(V_G)$

As for MOSFET, Diode, and BJT, several models for SCR can be developed

The Ideal SCR Model

Consider the Ideal SCR Model

Consider nearly Ideal SCR Model

- On voltage approximately 0.9V
- Major contributor to ON-state power dissipation
- Even with large currents, P_{ON} is quite small

The solution of these two equations is at the intersection of the load line and the device characteristics

Note three intersection points Two (upper and lower) are stable equilibrium points, one is not

When operating at upper point, $V_F=0$ so V_{CC} appears across R_L We say SCR is ON

When operating at lower point, I_F approx 0 so no signal across R_L We say SCR is OFF

When $I_G=0$, will stay in whatever state it was in

For notational convenience will drop subscript unless emphasis is needed

Operation with the Ideal SCR

Now assume it was initially in the OFF state and then a gate current was applied

$$V_{CC} = I_F R_L + V_F$$
$$I_F = f(V_F, I_G)$$

Now there is a single intersection point so a unique solution

V_{CC}

IF.

IG

 V_{G}

R

VF

The SCR is now ON

Removing the gate current will return to the previous solution (which has 3 intersection points) but it will remain in the ON state

Reduce V_{CC} so that V_{CC}/R_L goes below I_H

This will provide a single intersection point

 V_{CC} can then be increased again and SCR will stay off

Must not increase V_{CC} much above V_{BGF0} else will turn on

 V_{F}

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110V)

SCR will turn off whenever AC signal goes negative

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110V)

SCR will turn off whenever AC signal goes negative

VF

This will provide a single intersection point

But when $V_{\text{CC}}\,$ is then increased SCR will again turn on

Operation with the actual SCR

Operation with the actual SCR

- Still two stable equilibrium points and one unstable point
- ΔV_F is quite constant and small (around 1V)
- If large current is flowing, power in anode can be large $(P_A \approx I_F \bullet 1V)$
- Power in gate is usually very small

To turn on, must make I_G large enough to have single intersection point

$$\begin{split} I_{H} \text{ is the holding current} \\ I_{L} \text{ is the latching current (current immediately after turn-on)} \\ V_{BGF0} \text{ is the forward break-over voltage} \\ V_{BRR} \text{ is the reverse break-down voltage} \\ I_{GT} \text{ is the gate trigger current} \\ V_{GT} \text{ is the gate trigger voltage} \end{split}$$

SCR Terminology

Issues and Observations

Vcc

- Trigger parameters (V_{GT} and I_{GT}) highly temperature dependent
- Want gate "sensitive" but not too sensitive (to avoid undesired triggering)
- SCRs can switch very large currents but power dissipation is large
- Heat sinks widely used to manage power
- Trigger parameters affected by both environment and application
- Trigger parameters generally dependent upon VF
- Exceeding V_{BRR} will usually destroy the device
- Exceeding V_{BGF0} will destroy some devices
- Lack of electronic turn-off unattractive in some applications
- Can be used in alarm circuits to attain forced reset
- Maximum 50% duty cycle in AC applications is often not attractive

Alarm Application

Performance Limitations with the SCR

- Very attractive properties as an electronic switch
- SCR is very useful

But:

- 1. Only conducts in one direction
- 2. Can't easily turn off (though not major problem in AC switching)

SCR is always off

SCR is ON less than 50% of the time (duty cycle depends upon V_G)

Often use electronic circuit to generate V_{G}

Performance Limitations with the SCR

Would be useful in many additional applications if:

- 1. Could conduct in both directions
- 2. Can easily turn off with I_G

Improvement Concept

- 1. Only conducts in one direction
- 2. Can't easily turn off (though not major problem in AC switching)

- 1. Could conduct in both directions
- 2. Generating two gate voltages referenced to different cathodes a bit cumbersome

Will investigate bi-directional devices in next lecture

Stay Safe and Stay Healthy !

End of Lecture 29